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Circular cylindrical shells with nonuniform edge constraints (with zero radial and circumferen-
tial displacement) are investigated, including riveted shells. The linear modes of simply sup-
ported shells vibrating in vacuo are used as admissible functions, and the solution is obtained
with the arti"cial spring method. The FluK gge theory of shells is used and in-plane inertia is
retained. Any shell constraint other than simple supports can be studied with the proposed
method. Complicating e!ects due to the contained inviscid #uid, elastic bed of partial axial and
angular dimensions, intermediate constraints and added mass are considered. The convergence
of the method is numerically investigated and the e!ect of the number of rivets (clamped arcs)
on shell modes is studied. ( 2000 Academic Press
1. INTRODUCTION

THE APPLICATION OF THE RAYLEIGH}RITZ METHOD to structures with rigid boundaries by
treating such problems as limiting cases of free boundary problems, for which the
admissible functions can be simpler, has largely extended the power of the method. This
technique introduces arti"cial translational and rotational springs at the boundaries;
the sti!ness of these springs can be assumed su$ciently high to simulate rigid constraints
with the required accuracy. Recent applications of this technique to shells were made, e.g. by
Yuan & Dickinson (1994), Cheng and Nicolas (1992), Cheng (1994) and Amabili et al.
(1998).

The Rayleigh}Ritz method estimates natural frequencies as an upper-bound value as
a consequence of the discretization of the system. When arti"cial springs are used, the
structure studied is a little more #exible than the original one, and natural frequencies can
be underestimated. However, Ilanko and Dickinson (1999) have shown that if a negative
sti!ness is used for the arti"cial springs, natural frequencies are overestimated. Therefore,
computing natural frequencies for both positive and negative sti!nesses, gives a measure of
the accuracy reached, excluding the truncation e!ect due to discretization.

Amabili and Garziera (1999) proposed to use in the Rayleigh}Ritz method a simple and
systematic choice of admissible functions which are the eigenfunctions of the closest, simple
problem extracted from the one considered. In particular, the problem extracted must be
&&less constrained'' than the original one; what is meant by less constrained is a problem
where some constraints or other complications (e.g. added masses) are eliminated. The rigid
constraints eliminated are replaced by elastic ones. The convergence of the method has been
analytically investigated.
0889}9746/00/070669#22 $35.00/0 ( 2000 Academic Press
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The present study is the application of the systematic choice of admissible functions in the
Rayleigh}Ritz method developed by Amabili & Garziera (1999) to a quite complex problem
in which a circular cylindrical shell presents nonuniform edge constraints (with zero radial
and circumferential displacement). The possibility of having discontinuous constraints as
for riveted shells is also studied. The linear modes of simply supported shells vibrating in
vacuo are used as admissible functions; this case will be considered as the simple problem
extracted from the one under study. Therefore, any shell constraint other than simple
supports can be studied with the proposed method. Moreover, the following complicating
e!ects are considered: a contained inviscid #uid, elastic bed of partial longitudinal and
angular dimension, intermediate constraints and added mass. Part II of the present study
will investigate vibrations of shells coupled to #owing #uid. The present study is related to
that of Amabili et al. (1997), where circular plates with nonuniform constraints have been
studied by using the same method. In particular, the FluK gge theory of shells is used and
in-plane inertia is retained. Each complicating e!ect adds an additional matrix to the
original eigenvalue problem; this additional matrix can be built separately, without com-
plicating the solution of the whole problem. The number of degrees of freedom, i.e. the
dimension of the eigenvalue problem, is largely reduced with respect to other numerical
approaches, like the "nite element method.

Many interesting studies are available for circular cylindrical shells with uniform edge
constraints. A very well-known study is Forsberg's (1964) that investigated the in#uence of
uniform boundary conditions on natural frequencies. Additional works up to the 1960s are
reviewed in Leissa's (1973) book. Recently, Loveday & Rogers (1998) studied free vibrations
of elastically supported circular cylindrical shells by using the FluK gge theory of shells. They
investigated the e!ect on natural frequencies of translational and rotational springs with
uniform sti!ness around each shell edge.

Non-uniform boundary conditions have been studied for circular plates, e.g. by Amabili
et al. (1997), Leissa et al. (1979); analogous study for circular shells is less extensive.
Nonlinear vibrations of laminated circular cylindrical shells with nonuniform rotational
edge constraints have been studied by Fu and Chia (1993). They analysed a shell with
nonuniform boundary conditions with a discontinuous variation, i.e. built-in on an arc and
simply supported on the following arc. No constraint on the axial displacement was
imposed. The solution was obtained by using a double Fourier series expansion, but few
terms were retained due to the complexity of the nonlinear shell theory used.

Circular shells partially loaded by a distributed mass and resting on an elastic bed have
been studied by Amabili and Dalpiaz (1997). Both the mass load and the elastic bed were
assumed to be applied on limited arcs and with arbitrary distributions in the circumferential
direction, while they were considered to be uniformly distributed in the axial direction on
the entire shell length.

The e!ect of lumped masses on the free vibrations of empty and #uid-"lled shells has been
studied theoretically, by using the receptance method, and experimentally by Amabili
(1996); the e!ect of a single lumped mass on a cylindrical panel has been studied by Soedel
(1993) using the receptance method.

Internal uniform constraints have been studied in several papers. For example,
PamKdoussis and Lakis (1972) studied vibrations of circular cylindrical shells with several
axially equispaced constraints. However, nonuniform internal line and surface constraints
are more complex and can be studied by using the present method.

2. SHELL WITH NONUNIFORM CONSTRAINTS

A cylindrical coordinate system (O; x, r, h) is introduced, with the origin O at the centre of
the shell edge. The circular cylindrical shell has radius R, length ¸ and uniform thickness h,



Figure 1. Schematic of the shell, coordinate system and shell displacements.
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and the displacement of a point on the mean surface in the axial, angular and radial
directions is indicated by u, v and w, respectively (see Figure 1). The mode shapes of the shell
are expanded by using a base involving all the linear modes of the simply supported shell
vibrating in vacuo; this case will be considered as the simple problem extracted from the one
studied. The boundary conditions of the simply supported shell are N

x
"M

x
"v" w"0

for x"0 and x"¸, where N
x

is the axial force and M
x

is the bending moment per unit
length. In particular, a symmetric system with respect to the angular coordinate h"0 is
assumed. Therefore, symmetric and antisymmetric modes with respect to this axis will be
considered. The symmetric modes are expanded as
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where a
nmj

are the unknown coe$cients involved in the mode expansion, A
nmj

and B
nmj

are
the mode shape coe$cientss, n, m and j indicate the number of circumferential waves, the
number of axial half-waves and the mode number, respectively. In particular, the mode
number j"1, 2, 3 denotes modes with prevalent radial, angular and axial displacements,
respectively. In fact, it is well known that the frequency equation of a simply supported shell
is given by the following bi-cubic equation:
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which has three roots X
nmj

for any given values of n and m; these roots correspond to
j"1, 2, 3. The coe$cients K

0
, K

1
and K

2
are given in the Appendix for the FluK gge theory

of shells and depend on the values of n and m. In equation (2), X
nmj

is the frequency
parameter, de"ned as

X2
nmj

"u2
nmj

R2o
S
(1!l2)/E, (3)
sThe normalization of the radial displacement to 1 gives a very high value, theoretically R, to B
nmj

for the
axisymmetric mode (n"0) with prevalent angular displacement. In the numerical implementation, it is su$cient
to use a large value.
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where u
nmj

is the corresponding circular frequency, o
S
is the shell mass density, E is Young's

modulus and l is the Poisson ratio. The mode shape coe$cients A
nmj

and B
nmj

are computed
by a linear system that is reported in the Appendix for the FluK gge theory of shells. The
antisymmetric modes with respect to h"0 are expanded as
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In the case that the system loses its symmetry with respect to h"0, the following mode
expansion must be considered:
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. (5)

The reference kinetic energy ¹*
S

of the shell, in the general case of expansion (5), is given
by
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The use of admissible functions that are the natural modes of a less-constrained problem,
allows an interesting simpli"cation, as observed by Amabili & Garziera (1999). In fact, the
maximum potential energy <

S
of the shell can be obtained as the multiplication of the

reference kinetic energy of a natural mode in the less-constrained problem by the corre-
sponding eigenvalue u2

nmj
(the squared circular frequency) of the shell and by the coe$cients

a
nmj

or b
nmj

, and then adding all the products. The result is
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In equation (7), the orthogonality of the eigenfunctions of the less-constrained problem has
been used.

The maximum potential energy <kI stored by the elastic distributed springs, which
simulate the #exible axial translational constraint at x"0, ¸, is given by

<kI"1
2

2n
:
0

kI (h)u2 (0, h)Rdh#1
2

2n
:
0

kI (h) u2 (¸, h)Rdh. (8)

In equation (8) kI (h) is the nonuniform spring sti!ness (N/m2) that is assumed to be the same
at x"0 and ¸. For simplicity, kI (h) is assumed to be symmetric with respect to h"0, and it
can be expanded into the following cosine series:

kI (h)"
=
+
k/0

kI
k
cos (kh). (9)
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From now on, the system is assumed to be symmetric with respect to h"0. This hypothesis
simpli"es the calculations, without loss of generality, and can easily be removed. For
symmetric modes, the substitution of equations (1) and (9) into equation (8) gives
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For antisymmetric modes, the substitution of equations (2) and (9) into equation (8) gives
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The maximum potential energy <
c
stored by the elastic distributed rotational springs,

that simulate the #exible rotational constraint at x"0, ¸, is given by
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In equation (14) c (h) is the nonuniform rotational spring sti!ness (N) that is assumed to be
the same at x"0 and ¸. Similarly to kI (h), c (h) is assumed to be symmetric with respect to
h "0; it can be expanded into the following cosine series:

c(h)"
=
+
k/0

c
k
cos (kh). (15)

For symmetric modes, substitution of equations (1) and (15) into equation (14) gives
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Similarly, for antisymmetric modes
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It is interesting to note that a fully clamped shell is obtained by setting a uniform and very
high value to the sti!nesses of the translational and rotational springs kI and c. The values of
the spring sti!nesses simulating a clamped shell can be obtained by trial and error, or by
evaluating the edge sti!ness of the shell. In fact, it was found that the natural frequencies of
the system converge asymptotically to those of a clamped shell when kI and c become very
large.

A second observation concerns shells used in engineering applications. In practice, it can
be easier to make a rigid rotational constraint (corresponding to cPR) than a rigid axial
constraint (kI PR). As a consequence that in many cases the in#uence of the axial
constraint on the natural frequencies of shells is very important, one should specify if
a clamped shell is assumed only constrained with respect to rotation or if it is a fully
clamped shell with constrained axial displacement u at the shell ends.

3. COMPLICATING EFFECTS

An important advantage of the present method is that additional complicating e!ects can
be included into the original problem, by adding energy terms without any complication in
the approach. In particular, the e!ects of a contained inviscid #uid, of a nonuniform elastic
bed and of an added mass are considered here as examples. Additional intermediate
constraints to shell motion in the radial direction can be obtained by conveniently setting
the sti!ness of the elastic bed; intermediate constraints in other directions and rotational
constraints can be treated similarly.

The present approach can easily be extended to shells with nonuniform thickness in the
circumferential and axial directions. The natural modes of the simply supported shell of
uniform thickness equal to the minimum thickness of the nonuniform shell can be used as
the base, and all the energies must be calculated by considering the thickness h as a function
of the coordinates h and x. However, the maximum potential energy of the shell cannot be
computed by using equation (7) anymore, as observed by Amabili & Garziera (1999) in the
case of beams. In this case the maximum potential energy of the shell must be evaluated by
using the expression deriving form the shell theory used, e.g. Cheng & Nicolas (1992).
Cheung & Zhou (1999) applied a new set of beam functions to study vibrations of tapered
rectangular plates; similar functions could be also applied for shells with nonuniform
thickness.

3.1. CONTAINED INVISCID FLUID

The shell is considered completely "lled with an inviscid and incompressible #uid. The ends
of the shell are assumed to be open. The hydrostatic pressure e!ect is neglected in the
following study. For an incompressible and inviscid #uid, its deformation potential satis"es
the Laplace equation

+2/ (x, h, r)"0. (18)

The deformation potential / is related to the velocity potential /I by

/I (x, h, r, t)"iu/e*ut, (19)
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which is assumed to be harmonic. The velocity of the #uid v is related to /I by v"
grad /I .

The Laplace equation (18) is solved with the boundary conditions

/"0 at x"0, ¸ and (L//Lr)
r/R

"!w, (20, 21)

and / must be regular in the #uid domain. Equation (20) states that the shell ends are open
and equation (21) ensures a contact between the shell wall and the #uid. Solution of Laplace
equation satisfying equation (20) and regularity is (e.g. Amabili 1999)
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is the modi"ed Bessel function of order n. Applying condition (21), one obtains
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where the prime indicates the derivative with respect to the argument.
The reference kinetic energy of the contained #uid, by using Green's theorem (e.g.

Amabili 1997), is
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where o
F

is the mass density of the #uid.

3.2. ELASTIC BED

The maximum potential energy <
B

stored by an elastic bed composed of radial elastic
springs of sti!ness bI (x, h) is given by
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where the sti!ness bI (x, h) of the bed (N/m3) is assumed to be symmetric with respect to
h"0 and to x"¸/2. For the symmetry hypothesis, bI (x, h) can be expanded into the
following series:
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For symmetric modes one obtains
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Similarly, for antisymmetric modes
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3.3. ADDED MASS

A lumped mass M (kg) at x"x*, h"h* is considered. The reference kinetic energy of the
added mass is given by
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M
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2
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As usual, a symmetric distribution of added masses with respect to h"0 is assumed;
therefore, in the case of one mass only, h*"n is assumed. For symmetric modes one
obtains
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For antisymmetric modes one obtains
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this means that an added mass located at h*"n only a!ects the tangential displacement of
antisymmetric modes. The e!ect of a distributed mass is obtained as a natural extension.

4. EIGENVALUE PROBLEM

The Rayleigh quotient for the problem studied is given by
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X being the circular frequency (rad/s) of the system. Only a "nite number of modes in the
Rayleigh-Ritz expansion are retained. The matrix q of the Ritz coe$cients is introduced,

q
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a
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(36)
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In equation (36) the expansion of symmetric and antisymmetric modes involves 3]N]NI
terms; N and NI must be chosen large enough to give the required accuracy.

The reference kinetic energy of the shell, equation (6), can be written in the following
vectorial notation:
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m and j, respectively. The maximum potential energy of the shell, equation (7), can be
written as
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The maximum potential energy stored by the elastic distributed springs, by using equations
(10) and (12), is
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In equations (42) and (43) the sums on k are stopped, in numerical computations, at an
integer value large enough to give the required accuracy. The maximum potential energy
stored by the elastic, rotational springs, obtained by equations (16) and (17), is
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The reference kinetic energy of the #uid contained into the shell, equation (26), can be
written as
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where the matrix MF is given by

(MF )
nsmijjI

"G
2d

ns
d
mi

d
jjI

I
0
(mnR/¸)

(m/¸) I@
0
(mnR/¸)

if n"0,

d
ns
d
mi

d
jjI

I
n
(mnR/¸)

(m/¸) I@
n
(mnR/¸)

if n'0.

(48)

The maximum potential energy stored by the elastic bed, obtained by equations (29) and
(31), is

<
B
"1

2
RqTKBq, (49)

where the matrix KB is given by

(KB)nsmijjI
"

=
+
k/0

=
+
l/0

t
nsk

k
mil

bI
kl

for symmetric modes, (50)

(KB)nsmijjI
"

=
+
k/0

=
+
l/0

u
nsk

k
mil

bI
kl

for antisymmetric modes. (51)

The reference kinetic energy stored by the lumped added mass, obtained by equations (33)
and (34), is

¹*
M
"1

2
MqTMMq, (52)

where the matrix MM for symmetric modes is given by

(MM)
nsmijjI

"(!1)n(!1)s[sin(mnx*/¸) sin (inx*/¸)#A
nmj

A
sijI

cos (mnx*/¸ ) cos (inx*/¸ )],

(53)

and for antisymmetric modes by

(MM)
nsmijjI

"(!1)n(!1)sB
nmj

B
sijI

sin (mnx*/¸ )sin (inx*/¸). (54)

The problem is solved minimizing the Rayleigh quotient, equation (35); this operation
gives the following Galerkin equation:

[o
S
h (¸/2)KS#KkI#Kc#KB]q

!X2[o
S
h (¸/2)MS#o

F
(¸/2)MF#(M/R)MM]q"0. (55)

5. NUMERICAL IMPLEMENTATION

The solution of the problem is obtained with a self-made code written in C language.
The matrices with six indices given in Section 4 are transformed in matrices with two
indices (plane matrices); this transformation is explained in Figure 2. The solution of
the generalized eigenvalue problem for real symmetric matrices given in equation (55) is
obtained by using a general iterative method based on a modi"ed routine of the ¸apack
package (NAG).

The computational load increases by N4 if all the natural frequencies available with the
used expansion are required, where N indicates the number of axial or circumferential
modes retained in the expansion. From the algorithmic point of view, this problem is easily
modularized and the matrices associated with the complicating e!ects are separately built.



Figure 2. Reduction of the six-index matrix to a two-index matrix.
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6. NUMERICAL RESULTS

Numerical results are obtained (i) to validate the method and to show its accuracy; (ii) to
study riveted shells; (iii) to study shells embedded on an elastic bed having partial extension
in longitudinal and angular directions including the case of shells with intermediate
constraints; (iv) to study water-"lled, riveted shell with partial elastic bed. It must be
observed that the e!ect of damping due to friction at the bolted or riveted joint (Shin et al.
1991; JeH zeH quel 1983) and all other nonlinear e!ects are neglected.

6.1. VALIDATION OF THE METHOD

The present method and the code developed have been tested with some cases already
studied in the literature. Initially a fully clamped shell, i.e. u"v"w"Lw/Lx"0 for x"0
and ¸, previously studied by Koval & Cranch (1962) and also discussed by Leissa (1970) has
been considered. The same case was also studied by Cheng & Nicolas (1992) and by Vronay
& Smith (1970) for modes with n45. It has the following characteristics: R"0)0762 m,
¸"0)3048 m, h"0)000254 m, E"204]109 Pa, o"7836)6 kg/m3 and l"0)3. The re-
sults obtained are given in Tables 1 and 2 and are in good agreement with those reported by
Koval & Cranch (1962), by Cheng & Nicolas (1992) and by Vronay & Smith (1970). The
theoretical results of Koval & Cranch (1962) were obtained with Donnell's shell theory by
using clamped}clamped beam functions.

In the present approach, 3]35 modes are used in the Ritz expansion for any given
number of circumferential waves. kI "109 N/m2 and c"108 N are used to simulate rigid
translational and rotational arti"cial springs; these values have been found by trial and
error, and incrementing these values does not change the results. It is very important to note
that the e!ect of the edge axial constraint is fundamental to calculate correctly the natural
frequencies of the system. Therefore, it is important to retain in the expansion of the shell
displacement not only #exural modes ( j"1) but also modes with prevalent axial and
torsional displacements ( j"2, 3). In Table 1, both natural frequencies computed with
3]35 modes and 3]50 modes in the Ritz expansion are given to show the convergence.



TABLE 1

Natural frequencies of a circular cylindrical shell clamped at the ends; n is the number of
circumferential waves. Only modes with one axial half-wave are considered. In the second
column, results in parentheses are computed with 3]50 modes in the Ritz expansion, the others

with 3]35 modes

n Present study Theory from Experiments from
Koval & Cranch (1962) Koval & Cranch (1962)

3 1132 (1124) 1176 1025
4 761 (755) 783 700
5 579 (575) 597 522
6 534 (531) 552 525
7 590 (589) 611 592
8 713 (713) 736 720

TABLE 2

Natural frequencies of a circular cylindrical shell clamped at the ends; results in round
parentheses are from Cheng & Nicolas (1992) and in square parentheses from Vronay & Smith

(1970)

Number of axial Number of circumferential waves
half-waves 3 4 5

1 1132 (1163) [1154] 761 (769) [765] 579 (581) [581]
2 2623 (2659) [2536] 1820 (1832) [1752] 1335 (1335) [1287]
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In particular, 3]35 modes give a good approximation in this case. A deeper investigation of
the degree of convergence is deferred to Section 6.2.

A second case used for comparison is a simply supported shell, empty or water-"lled, with
a lumped lead mass of 96)7 g attached. The shell has the following charac-
teristics: R"0)175 m, ¸"0)664 m, h"0)001 m, E"206]109 Pa, o"7700 kg/m3

o
F
"1000 kg/m3 and l"0)3. The "rst three mode shapes and natural frequencies of the

empty shell are shown in Figure 3 and compared with theoretical and experimental data
reported by Amabili (1996). Theoretical results of Amabili (1996) were obtained by using the
receptance method. Similarly, Figure 4 shows results for the water-"lled shell. The agree-
ment of results is remarkable for both the empty and water-"lled shell. Results were
obtained with 3]30]30 modes in the expansion.

6.2. RIVETED SHELLS

The same shell previously studied by Amabili (1996) and also used in the previous section is
considered here, with the only di!erence that o"7800 kg/m3; 3]32]20 modes are
considered in the expansion, where 31 is the maximum number of circumferential waves and
20 is the maximum number of axial half-waves. Natural modes of this riveted shell are
studied by imposing N equispaced clamped arcs of angular amplitude of 3)53 at each shell
end. The rivets are symmetrically distributed with respect to the origin h"0 and away from
this point (see Figure 5); both slope in the axial direction and axial displacements are
restrained at the rivet location by using springs of very high sti!ness, simulating rigid
constraints. Outside these clamped arcs the shell is simply supported. This hypothesis is



Figure 3. First three mode shapes and natural frequencies of the empty shell: (a) computed modes; (b) modes
computed by Amabili (1996); (c) experimental modes (Amabili 1996).

Figure 4. First three mode shapes and natural frequencies of the water-"lled shell: (a) computed modes; (b) modes
computed by Amabili (1996); (c) experimental modes (Amabili 1996).
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Figure 5. Drawing of riveted shell: (a) shell riveted at ring-sti!ener location; (b) equispaced rivets, symmetrically
placed with respect to h"0 and away from this point.
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good enough for inward displacement; in fact, in engineering applications, rivets are often
positioned at the ring-sti!eners (see Figure 5) that make the shell cross-section almost
undeformable at these axial locations. The outward displacement is not restrained in
a similar way, making the actual problem nonlinear. Here, the problem with restrained
outward displacement of the shell between the rivets is assumed for simplicity; practically it
is realized when the shell is glued to the sti!ener, e.g. to avoid #uid leakage.

Natural frequencies of symmetric and antisymmetric modes versus the number N of
rivets is given in Figure 6. It is very interesting to observe that an increment of the frequency
does not necessarily follow an increment of the number of rivets. In fact, when the number of
rivets is equal to the number of nodal diameters of the mode considered, there is a local
minimum of the natural frequency. A decrement of the number of rivets from this particular
value is associated with a movement of the rivets from the nodes and with an increment of
the natural frequency. In Figure 6 extreme values, obtained with no rivets (simply supported
shell) and an in"nite number of rivets (clamped shell) are reported.

The convergence of the method with the number of circumferential and axial modes used
in the expansion is shown in Figure 7 for a shell with four rivets. It shows that 3]25 modes
in both circumferential and axial directions give a good accuracy. A discussion on the
convergence of the method can be found in Amabili and Garziera (1999).

Figures 8 and 9 show the "rst four symmetric and antisymmetric modes, respectively, for
the shell "xed with four rivets. Natural frequencies are given in the captions and are
comprised between those of the simply supported and those of the clamped shell. The
fundamental mode with four rivets is the "rst antisymmetric mode. The "gures show only
the radial displacement. The shell slope in the axial direction is zero at the rivets, as shown
in Figures 8 and 9.
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Figure 8. Symmetric modes of the empty shell with four rivets: (a) "rst mode, 238 Hz; (b) second mode, 256 Hz; (c)
third mode, 298 Hz; (d) fourth mode, 348 Hz.
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The e!ect of the sti!ness of the arti"cial translational and rotational springs at the rivet
locations is investigated in Figure 10, assuming kI (h)"c (h). In this case, the rotational
springs give an horizontal asymptote for a value of c (h) lower than the one necessary for the
translational springs to reach an horizontal line. The "gure shows that an increment of the
sti!ness of the translational springs superior to 109 N/m2 does not give any signi"cant
increase to the frequency of the "rst symmetric mode; this value is large enough to simulate
a rigid constraint with a good accuracy.

Figure 11 is analogous to Figure 6 but is relative to the water-"lled shell. The e!ect of the
contained water is that of reducing drastically the natural frequencies of the system.
A second interesting phenomenon is that the mode order is changed by the added virtual
mass. This is shown, e.g. by comparing Figures 6(a) and 11(a); in particular, the curve
relative to the fourth mode in Figure 6(a) has almost the same shape as the curve for the
third mode in Figure 11(a). These two curves correspond to modes with almost the same
shape, even if their order is changed. A last interesting di!erence with respect to the empty
shell is that a larger number of rivets (clamped arcs) is necessary to approximate a clamped



Figure 9. Antisymmetric modes of the empty shell with four rivets: (a) "rst mode, 224 Hz; (b) second mode,
237 Hz; (c) third mode, 304 Hz; (d) fourth mode, 348 Hz.

Figure 10. Natural frequency of the "rst symmetric mode of the empty shell with four rivets versus the rivet
sti!ness, assuming kI (h)"c (h).
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Figure 11. First four natural frequencies of the water-"lled shell versus the number of rivets (clamped arcs):
(a) symmetric modes; (b) antisymmetric modes.

686 M. AMABILI AND R. GARZIERA
shell. This is due to the largely increased mass of the system due to the added virtual mass
introduced by the contained water.

6.3. SHELLS ON PARTIAL ELASTIC BED OR WITH AN INTERMEDIATE CONSTRAINT

The same shell studied in the previous section is considered here. Initially 3]20]24 modes
are considered in the expansion, where 19 is the maximum number of circumferential waves
and 24 is the maximum number of axial half-waves. Figure 12 shows the "rst two modes of
the clamped empty shell with an almost rigid central bed, ring-shaped, of width ¸/5. The
sti!ness of the elastic bed is 1010 N/m3.

Figure 13 shows the "rst two symmetric and antisymmetric modes of the clamped empty
shell with an almost-rigid central bed, limited in both angular and axial directions, of



Figure 12. Modes of the clamped empty shell with an almost rigid central ring: (a) "rst mode, 630 Hz; (b) second
mode, 646 Hz.

Figure 13. Modes of the clamped empty shell with an almost rigid central bed limited in the axial and angular
directions: (a) "rst symmetric mode, 317 Hz; (b) second symmetric mode, 404Hz; (c) "rst antisymmetric mode,

318 Hz; (d) second antisymmetric mode, 417 Hz.
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Figure 14. Modes of the water-"lled shell with an almost rigid central bed limited in the axial and angular
directions and edge-springs on four arcs; positions of rivets and elastic bed are indicated: (a) "rst symmetric mode,
98 Hz; (b) second symmetric mode, 110 Hz; (c) "rst antisymmetric mode, 92.8 Hz; (d) second antisymmetric

mode, 113 Hz.
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dimension L/5]1803. The sti!ness of the elastic bed is 1010 N/m3 and corresponds to an
almost-rigid intermediate constraint on the whole bed extension. Results are obtained with
3]32]21 modes in the mode expansion, where 31 is the maximum number of circumferen-
tial waves and 21 is the maximum number of longitudinal half-waves.

6.4. WATER-FILLED, RIVETED SHELLS ON PARTIAL ELASTIC BED

The individual e!ects previously investigated are combined to study a water-"lled
(o

F
"1000 kg/m3) shell with four rivets and elastic bed of partial angular and longitudinal

extension. The shell with the same dimension and material properties as the one in
Sections 6.2 and 6.3 is considered. In particular, the shell is assumed to be constrained by
springs of sti!ness kI "108 N/m2 and c"107 N at four equispaced arcs of angular
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amplitude of 3.63 at each shell ends, away from the angular origin h"0. Moreover,
an elastic bed of extension !3034h4303, 0)4¸]0)6¸ and sti!ness bI "1010 N/m3 is
considered. Results, obtained with 3]32]20 terms in the mode expansion, are given in
Figure 14.

7. CONCLUSIONS

Circular cylindrical shells with nonuniform edge constraints are investigated, including
riveted shells. Moreover, complicating e!ects due to contained inviscid #uid, elastic bed of
partial longitudinal and angular extensions, intermediate constraints and added mass are
considered. The solution is obtained by using the Rayleigh}Ritz method with a simple and
systematic choice of admissible functions which are the eigenfunctions of the closest, simple
problem extracted from the one considered. In particular, the problem extracted is the
simply supported shell and any additional constraint can be studied. The convergence of
the method is numerically investigated and the e!ect of the number of rivets (clamped arcs)
on shell modes is studied.
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APPENDIX: FLUG GGE THEORY OF SHELLS

The coe$cients K
i
in equation (2), for i"0, 1, 2, according to the FluK gge theory of shells are

(Leissa 1973)

K
2
"1#

3!l
2

(n2#j2)#k (n2#j2)2, (A1)

K
1
"

1!l
2 C(3#2l) j2#n2#(n2#j2)2#

3!l
1!l

k (n2#j2)3D, (A2)

K
0
"

1!l
2

M(1!l2)j4#k (n2#j2)4

#k[2(2!l)j2n2#n4!2lj6!6j4n2!2(4!l)j2n4!2n6]N, (A3)

where j"mn R/¸ and k"h2/(12R2).
The mode shape coe$cients A

nmj
and B

nmj
are computed by the following linear system

for the FluK gge theory of shells (Leissa 1973):

C
!j2!(1#k)

1!l
2

n2#X2
1#l

2
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1#l
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jn !n2!
1!l

2
j2 (1#3k)#X2 D CAnmj

B
nmj
D

"C
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